3.96 \(\int \frac{\sqrt{d^2-e^2 x^2}}{d+e x} \, dx\)

Optimal. Leaf size=46 \[ \frac{\sqrt{d^2-e^2 x^2}}{e}+\frac{d \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{e} \]

[Out]

Sqrt[d^2 - e^2*x^2]/e + (d*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/e

________________________________________________________________________________________

Rubi [A]  time = 0.0161483, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {665, 217, 203} \[ \frac{\sqrt{d^2-e^2 x^2}}{e}+\frac{d \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{e} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d^2 - e^2*x^2]/(d + e*x),x]

[Out]

Sqrt[d^2 - e^2*x^2]/e + (d*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/e

Rule 665

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 2*p + 1)), x] - Dist[(2*c*d*p)/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1), x], x] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[
m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{d^2-e^2 x^2}}{d+e x} \, dx &=\frac{\sqrt{d^2-e^2 x^2}}{e}+d \int \frac{1}{\sqrt{d^2-e^2 x^2}} \, dx\\ &=\frac{\sqrt{d^2-e^2 x^2}}{e}+d \operatorname{Subst}\left (\int \frac{1}{1+e^2 x^2} \, dx,x,\frac{x}{\sqrt{d^2-e^2 x^2}}\right )\\ &=\frac{\sqrt{d^2-e^2 x^2}}{e}+\frac{d \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{e}\\ \end{align*}

Mathematica [A]  time = 0.0245406, size = 43, normalized size = 0.93 \[ \frac{\sqrt{d^2-e^2 x^2}+d \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{e} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d^2 - e^2*x^2]/(d + e*x),x]

[Out]

(Sqrt[d^2 - e^2*x^2] + d*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/e

________________________________________________________________________________________

Maple [A]  time = 0.047, size = 77, normalized size = 1.7 \begin{align*}{\frac{1}{e}\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}+{d\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-e^2*x^2+d^2)^(1/2)/(e*x+d),x)

[Out]

1/e*(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(1/2)+d/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(1/
2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.65665, size = 101, normalized size = 2.2 \begin{align*} -\frac{2 \, d \arctan \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{e x}\right ) - \sqrt{-e^{2} x^{2} + d^{2}}}{e} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

-(2*d*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) - sqrt(-e^2*x^2 + d^2))/e

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (- d + e x\right ) \left (d + e x\right )}}{d + e x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e**2*x**2+d**2)**(1/2)/(e*x+d),x)

[Out]

Integral(sqrt(-(-d + e*x)*(d + e*x))/(d + e*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.21602, size = 42, normalized size = 0.91 \begin{align*} d \arcsin \left (\frac{x e}{d}\right ) e^{\left (-1\right )} \mathrm{sgn}\left (d\right ) + \sqrt{-x^{2} e^{2} + d^{2}} e^{\left (-1\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

d*arcsin(x*e/d)*e^(-1)*sgn(d) + sqrt(-x^2*e^2 + d^2)*e^(-1)